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Spatial length scales of the rate of dissipation, χ , of fluctuations of a conserved scalar,
Z, are inferred numerically using a DNS database of a turbulent planar jet flame. The
Taylor-scale Reynolds numbers lie in the range of 38 to 58 along the centreline of the
simulated jet flame. Three different methods are used to study the spatial length scales
associated with χ . First, analysis of the one-dimensional dissipation spectra shows an
expected Reδ

−3/4 (Kolmogorov) scaling with the outer-scale Reynolds number, Reδ .
Secondly, thin sheet-like three-dimensional scalar dissipation structures have been
investigated directly. Such structures were identified within the computational domain
using level-sets of the χ-field, and their thicknesses were subsequently computed. The
study shows, in accordance with experimental studies, that the captured dissipation-
layer thickness also shows a Kolmogorov scaling with Reδ . Finally, spatial filters
of varying widths were applied to the instantaneous Z field in order to model the
averaging effect that takes place with some experimental measurement techniques. The
filtered scalar dissipation rate was then calculated from the filtered scalar field. The
peaks in the instantaneous filtered χ-profiles are observed to decrease exponentially
with increasing filter width, yielding estimates of the true value of χ . Unlike the dis-
sipation length scales obtained from the spectral analysis and the level-set method, the
length-scale estimates from the spatial-filtering method are found to be proportional
to Reδ

−1. This is consistent with the small-scale intermittency of χ which cannot be
captured by techniques that just resolve the conventional Batchelor/Obukhov–Corrsin
scale. These results have implications when considering resolution requirements for
measuring scalar dissipation length scales in experimental flows.

1. Introduction
The rate of scalar dissipation, also referred to as the scalar dissipation for short, is

regarded as a central concept in the theory of laminar and turbulent non-premixed
combustion (Bilger 1980, 2004; Williams 1985; Pitts, Richards & Levenson 1999;
Peters 2000). Mathematically, the instantaneous scalar dissipation is defined as

χ = 2D∇Z′ · ∇Z′ � 2D∇Z · ∇Z, (1.1)

where D is an appropriate molecular diffusion coefficient, Z(x, t) is a conserved scalar
field known as the mixture fraction that varies in space, x, and time, t , and which has
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the value of zero in the unmixed oxidizer stream and unity in the unmixed stream
containing the fuel. The quantity Z′ denotes the deviation of Z from the mean or
average value. According to (1.1), χ is directly proportional to the square of the
magnitude of the scalar gradient, and it can be shown that the average of χ quantifies
the rate of molecular mixing in a flow field, or equivalently, the rate at which the
average variance of scalar fluctuations, Z′2, is destroyed (Tennekes & Lumley 1974).
While there is good evidence to suggest that the statistics of χ have some properties
of a near-universal nature (Monin & Yaglom 1971; Nelkin 1994; Sreenivasan &
Antonia 1997; Wang, Chen & Brasseur 1999) that can be applied to many mixing
environments, including the ocean, the atmosphere and internal flows of engineering
importance, the departures from the universal behaviour (specifically for the inertial-
subrange) have also been well documented (Frisch 1991; Sreenivasan & Stolovitzky
1996; Noullez et al. 1997). Frisch (1995) gives a detailed review of these aspects in the
theory of small-scale turbulence. In this paper, we concentrate primarily on results
pertaining to reacting flows, for which turbulent scalar mixing is less well-studied in
spite of its crucial role in such flows (Bilger 1980).

Understanding the statistical properties of a random quantity such as χ is the
starting point for developing improved models for mixing and for non-premixed
combustion. Experimentally, it is observed that the statistical behaviour of χ is
similar to that of the instantaneous turbulence dissipation, ε, in terms of their strong
intermittency. In other words, a frequent occurrence of instantaneous values much
larger than the mean is observed. However, the frequency and magnitudes of the
fluctuations in χ are characteristically larger than those in ε. Nonetheless, both
variables show a skewed PDF that has a large tail.

It follows from the studies of Batchelor & Townsend (1949), Grant, Stewart &
Moilliet (1962) and Meneveau & Sreenivasan (1991) that the average value of ε (x, t)
is not representative of the full viscous dissipation characteristics, and the reader is
referred to the reviews by Sreenivasan (2004) and Schumacher, Sreenivasan & Yeung
(2005). Attempts to incorporate the high-variability properties of ε into a turbulence
theory led to the well-known work of Kolmogorov (1962). In this respect, Oboukhov
(1949) and Corrsin (1951) were the first to assume that many aspects of turbulent
mixing are similar to turbulence itself and predicted the scaling of the inertial
subranges of structure functions and spectra.

Experimental measurement of the scalar dissipation entails the difficult task
of obtaining the instantaneous spatial derivative (in at least one dimension) of
the mixture fraction with sufficient resolution that these frequent large-magnitude
excursions are not overlooked (Gibson 1991). The experimental study by Dahm
& Southerland (1997) gives an assessment of the accuracy of Taylor’s hypothesis
in approximating the magnitude of the scalar dissipation rate from such one- or
two-dimensional spatio-temporal measurements of the scalar gradients. Furthermore,
the study quantifies the extent of the departure from the true magnitudes using
such measurements and gives a generalized analytical framework to maximize
the correlation between the measured and true dissipation rates. There have been
many other recent attempts (experimental and numerical studies) to quantify scalar
dissipation in turbulent axisymmetric and planar jets, such as those by Dahm,
Southerland & Buch (1991), Buch & Dahm (1996, 1998), Dahm & Southerland
(1999), Pitts et al. (1999), Tsurikov & Clemens (2002), Su & Clemens (2003)
and Barlow & Karpetis (2005b). An additional difficulty encountered in reacting
flows is that the mixture fraction itself does not exist on its own as part of the
experimental flow. It is generally derived from the composition of the mixture (Bilger,
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St̊arner & Kee 1990). This requires simultaneous measurements of multiple species
concentrations in a high-temperature environment as a prelude to obtaining the scalar
dissipation. This interest is motivated by a desire to characterize this fundamental
turbulence property and to model its behaviour owing to its key role in mixture-
fraction-based models for turbulent non-premixed or partially premixed combustion.

As most of the contributions to the statistics for scalar dissipation come from the
finest mixing scales of turbulence (see the reviews by Bilger 2004; Sreenivasan 2004),
the problem of reliable measurements of this quantity is further complicated by the
trade-off between higher resolution, corresponding to smaller experimental probe-
width, and greater signal-to-noise ratio. Thus, analysis of resolution requirements
of the scalar dissipation is of paramount importance. Owing to these inherent
experimental diagnostic limitations, studies such as Buch & Dahm (1996, 1998) Pitts
et al. (1999) and Su & Clemens (2003) have attempted to characterize the scalar
dissipation dynamics in non-reacting flows and extend the findings to turbulent
combustion. In this paper, we discuss results obtained by analysing direct numerical
simulation (DNS) data of a very well resolved mixture fraction field (Pantano 2004)
according to several criteria. Reynolds-number scaling and one-point statistics of the
scalar dissipation are presented and discussed.

2. Scalar dissipation length scales
2.1. Average and instantaneous dissipation length scales

The Kolmogorov length scale of turbulence is defined as

η =

(
ν3

〈ε〉

)1/4

, (2.1)

where 〈ε〉 denotes the mean of the turbulence kinetic energy dissipation rate, ε (x, t),
and ν is the kinematic viscosity. The mechanism of formation of turbulent fluid-
elements with a characteristic thickness of η can be explained in terms of the vorticity
transport equation, which describes the evolution of the vorticity field subject to
the balance between vortex-stretching due to the mean strain-rate field (resulting
in an elongation and thinning of the vortex-tube structures) and the reconnection
effects induced by viscous-diffusion. The result is a vortex tube with O(η) thickness,
characterizing the length scale at which the viscous dissipation of turbulent kinetic
energy predominates.

The average dissipation length scale η is undoubtedly important from a theoretical
and practical standpoint. However, owing to the attested departure from Gaussianity
in the dissipation range (Monin & Yaglom 1971), it is unable to fully characterize the
distribution of dissipation scales in turbulent flow. This multiplicity of dissipation
length scales is characteristic of the small-scale intermittency, and its physical
explanation involves the addition of a new feature to the traditional eddy-cascade
picture of turbulence by Kolmogorov (1941). She, Jackson & Orszag (1990) and She
(1991) describe the canonical picture of turbulence as consisting of a hierarchy of
small-scale coherent structures in addition to the known random eddy-cascade with
near-Gaussian statistics. These coherent structures are local and intermittent and,
thus, show strongly non-Gaussian statistics. The aforesaid mechanism of formation
of coherent vortex structures, based on the strain–diffusion balance, is supplemented
in the revised picture. She et al. (1990) describe the coherent vortex structures as being
subjected to an additional strain field caused by the vortex structures themselves in the
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event of large vorticity magnitudes. To account for this self-stretching component of
the strain rate, the strain-rate tensor is subdivided into the self-stretching and mean-
strain components. The former component becomes dominant at high vorticity (or,
equivalently, large velocity-gradient) magnitudes. The balance between the dominant
self-stretching component of strain rate and the viscous diffusion leads to the
formation of structures with sub-Kolmogorov thicknesses and results in the wide
dissipation length-scale distribution characteristic of intermittency. It is important to
note here that the descriptions of turbulence intermittency in Kolmogorov (1962) and
related studies presume the dissipation-scale statistics as lognormal-like. Unlike She
et al. (1990) and She (1991), these descriptions do not fully explain/model the
turbulence dynamics underlying such statistics.

For the reasons described above and in some circumstances, it becomes useful
to define a local, instantaneous, viscous dissipation length scale, called the local
Kolmogorov scale by Schumacher et al. (2005) and denoted here by η′. The concept
of a locally defined, fluctuating dissipation length-scale is not new, and has also
been put forth in the multifractal analysis of the small-scale turbulence structure
by Frisch & Vergassola (1991). This local quantity follows from (2.1) according to
the same dimensional arguments as used to define η, giving η′ (x, t) ∼ (ν3/ε (x, t))1/4.
Since ν is not expected to have very intermittent statistics, it largely depends on
some smooth function of the temperature, the majority of the variability of η′ results
from the statistics of ε. The abundance of local values of ε that are much larger
than 〈ε〉 (owing to its intermittent distribution) gives rise to a significant range of
instantaneous dissipation length scales smaller than η. Accurately measuring the
probability distribution function (or PDF) of ε requires that the minimum measuring

scale, ηmin ∼
(
ν3/εmax

)1/4
, be such that the probability that ε > εmax is very small, say

1% (Sreenivasan 2004).
The same argument of small-scale intermittency can be extended to turbulent

mixing dynamics, as explained in Sreenivasan (1991, 2004) and Bilger (2004), to
hypothesize the existence and significance of local scalar dissipation length scales,
or ηZ = ηSc−3/4, where ηZ denotes the Obukhov-Corrsin scale. This expression is
valid for Schmidt numbers, Sc, smaller than one, and Sc is defined as Sc= ν/D

(Tennekes & Lumley 1974). For large Schmidt numbers, Sc � 1, the corresponding
balance of turbulent stretching and molecular diffusion leads to the Batchelor (1959)
scale, defined as ηZ = ηSc−1/2. While the definition of the Batchelor scale is strictly
valid for Schmidt numbers greater than or equal to unity (Buch & Dahm 1998),
the label is commonly used to imply the finest mixing scale in the turbulence and
combustion literature. Hereinafter, for the sake of convenience, all references to the
Batchelor scale will imply the finest mixing-length scale in the broadest sense, whereas
the symbol ηZ will be used to denote the specific Schmidt number scaling for the
present case of Sc=0.7. It should be noted that the difference in value between the
Batchelor and Obukhov–Corrsin scales is negligible for Schmidt numbers of order
unity.

2.2. Categorization of the measurement methods

The experimental or numerical measurement of spatial scales associated with scalar
dissipation can be broadly categorized into approaches that involve either the
computation of two-point spatial correlations of scalar fluctuations (scalar spectra),
or the determination of the spatial distribution of the scalar dissipation using scalar
gradients.
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The method involving scalar spectra uses the standard eddy-cascade theory of
turbulence to arrive at estimates for the Batchelor length scale and is described in § 4.
On the other hand, information about the spatial distribution of χ can, in turn,
be acquired through two independent approaches used in the literature that either
compute the spatial variation of χ by plotting its iso-contours or level sets at various
fractional values of the local peak, keeping the grid-size fixed, or that model the decay
of the local peak values in the χ-profiles for incremental increases in the effective
spatial discretization (or filter width) of the sampling volume.

The former level-set (fixed filter-width) approach has been used in various numerical
and experimental studies, such as those by Buch & Dahm (1996, 1998), Kushnir,
Schumacher & Brandt (2006b), Su & Clemens (2003) and Tsurikov & Clemens
(2002), to investigate the thin planar three-dimensional scalar-dissipation structures
and ascertain their thicknesses. The thicknesses thus computed are characterized as
the spatial scales associated with scalar dissipation. The application of this approach
to the present study is detailed in § 5. Other experimental studies by Barlow & Karpetis
(2005a, b) estimate χ using the latter spatial-filtering approach. As described further
in § 6, this method in particular seems better suited for characterizing the small-scale
intermittency of the scalar-dissipation process.

The main motivation of the present study is to attempt a numerical implementation
of all of the above-mentioned approaches to characterize the spatial length scales of
the scalar dissipation in terms of easily measurable large-scale properties of the flow
such as the outer-scale turbulent Reynolds number. The following section outlines the
key features of the analysed DNS database. A detailed description of the aforesaid
approaches, the limitations involved in their implementation to the DNS database
and the discussion of (and comparison between) the results are detailed in § 4 and
onwards.

3. The numerical experiment
3.1. Choice of the DNS database

Traditionally, simulations involving the solution of the scalar advection diffusion
equation with the Navier–Stokes equations have resolved no more than the Batchelor
scale. Experiments in non-reacting flows by Buch & Dahm (1996, 1998), Pitts et al.
(1999) and Su & Clemens (2003) among others have also suggested that accurate
measurements of the scalar dissipation rate require a spatial resolution comparable
to (or even smaller than) the Batchelor scale, using scaling laws and self-similarity
arguments. However, as Barlow & Karpetis (2005b) suggest, applicability of these
scaling relationships to estimating the Batchelor scale in laboratory-scale flames is
unclear. Such estimates are hinged on the assumption of self-similarity of the flow
that is valid only far downstream, if present at all in common flame geometries
(Sreenivasan 2004). Furthermore, owing to the reasons described in the preceding
section, the intermittent character of the scalar dissipation process introduces
additional constraints on its spatial resolution and the Batchelor-scale estimate is no
longer enough for moments higher than the mean. Hence, various reviews by Bilger
(2004), Sreenivasan (2004), Barlow & Karpetis (2005b), and Schumacher et al. (2005)
concur that published χ-measurements from experiments or simulations of turbulent
jet flames can frequently have questionable spatial resolution, especially at high
Reynolds numbers.

Many recent well-resolved simulations of turbulent scalar mixing in the literature
are in the low (Yeung et al. 2004; Schumacher et al. 2005; Kushnir et al. 2006b) and
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moderate (She et al. 1993; Wang et al. 1999, Vedula, Yeung & Fox 2001) Reynolds-
number range, with perhaps the exception of Yeung, Donzis & Sreenivasan (2005).
However, they all tackle the problem of turbulent mixing in its simplest form, i.e.
between passive scalars. Donzis, Sreenivasan & Yeung (2005) give a good account
of the attributes of such DNS studies to date. For the low-to-moderate Reynolds-
number range evidenced in the present DNS, the small-scale evolution for reacting
cases can be expected to differ markedly from the evolution in non-reacting cases
owing to dilatation and relaminarization of the flow. DNS of constant-density flows
can therefore not be used to quantify dissipative structures in reaction zones for such
Reynolds numbers. However, DNS studies for the complex case of turbulent mixing
with reaction, e.g. in the aforesaid case of turbulent jet flames (Boersma 1999) or in
channel flows (Brethouwer & Nieuwstadt 2001), tend invariably to be limited to the
low-to-moderate range of Reynolds numbers with simplified chemistry and resolution
limited to about η. Even the relatively good resolution of the turbulent diffusion
flame DNS by Mizobuchi et al. (2005), using a varying 23–400 million grid-point
computational domain, is incapable of reproducing intermittency effects accurately
owing to the high Reynolds number it attempts to simulate and is, therefore, unsuitable
for our present purpose.

Therefore, we have chosen an extremely well-resolved DNS of a turbulent reacting
jet at a moderate jet-exit Reynolds number of 3000 and with relatively detailed four-
step chemistry (Pantano 2004). This DNS models the jet flow in the region important
for flame stabilization close to the nozzle. The near-nozzle region of jet flames has
remained virtually unstudied with respect to the scaling laws for the estimation of
the smallest turbulence scales, but a better understanding of the spatial-resolution
requirements for scalar dissipation in the stabilization region of the jet flame may be as
important as the well-studied self-similar regions further downstream. It is important
to note that Kolmogorov’s first hypothesis regarding the universal behaviour of the
fine dissipation length scales holds in the low-to-moderate Reynolds-number range
(She et al. 1993; Nelkin 1994; Saddoughi & Veeravalli 1994; Pope 2000; Yeung
et al. 2004; Kushnir et al. 2006b, Wang, Karpetis & Barlow 2007b). This justifies the
rationale of the present study that concerns itself with the spatial scales of dissipation
and does not depend on the existence of a well-defined inertial subrange in the
turbulence spectrum. See § § 4.2 and 4.3 for further discussion on this important issue.

3.2. Relevant attributes of the simulation

The present study makes use of the extensive database of a three-dimensional DNS of
a spatially evolving planar turbulent jet by Pantano (2004). The simulation models the
non-premixed combustion of methane with air using a four-step reduced mechanism in
which the transport equations for eight chemical species and five fluid mechanical fields
are solved. The DNS solves the compressible Navier–Stokes equations for moderately
low Mach number (i.e. with negligible compressibility effects) on a large cuboidal
computational grid of (Nx = 1024) × (Ny = 512) × (Nz = 192) grid-points, where the
x-, y- and z- Cartesian coordinate axes are aligned with the streamwise, cross-stream
and spanwise directions, respectively.

Figure 1 shows the schematic of the computational domain. The attributes of the
DNS are given in table 1. Here, Uj is the efflux velocity of the jet, ∆u =Uj − Uc is
the velocity difference (at efflux) between the co-flow and the jet, c1 and c2 are the
speeds of sound in the respective streams, ν0 is the kinematic viscosity of air at STP
conditions and Φ is the fuel–air equivalence ratio. The value of the stoichiometric
mixture fraction, Zs , in the present DNS is four to eight times larger than that for pure
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Figure 1. Schematic of the computational domain. The spanwise dimension L3, not shown
here, is orthogonal to the plane of the figure.

Geometrical attributes

Nozzle width H ∼2 mm
Pilot width h 0.325 H
Computational box dimensions (L1, L2, L3) (15 H, 10 H, 2.5H )

Physical attributes
Co-flow and pilot velocities Uc, Up 0.029 Uj , 0.29Uj

Convective Mach number Mc = ∆u/ (c1 + c2) 0.3
Jet-exit Reynolds number Re= ∆uH/ν0 3000
Centreline Taylor Reynolds numbers Reλ =

√
6.667Reδ 38 to 58

Prandtl number for air Pr = ν/DT 0.7
Stoichiometric mixture-fraction Zs = 1/ (Φ + 1) 0.2

Table 1. Geometrical specifications of the computational domain of the analysed DNS,
including the general physical attributes of the simulated flow. The Taylor Reynolds number
dependence on the outer-scale Reynolds number, Reδ , is defined according to Pope (2000).

hydrocarbon–air flames owing to the dilution of the hydrocarbon fuel with nitrogen.
The Lewis number, Le = α/D, where α is the thermal diffusivity, is unity for the
mixture-fraction field. This implies a Schmidt number equal to the Prandtl number,
Sc= Pr =0.7. This DNS uses a compact Padé scheme with sixth-order accuracy
for the computation of the spatial derivatives (Lele 1992). This scheme provides an
improved resolution of the finer length scales without numerical dissipation. Pre-
empting one of the results of this study, we note that the grid-discretization employed
in the DNS is fine enough to capture the instantaneous χ-distribution. This can be
deduced from the distribution of the grid-normalized dissipation length scales that
are shown in figure 13.
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For the studied flow configuration, the outer-scale Reynolds number, Reδ , is defined
as:

Reδ =
δ0.5u

′

ν
, (3.1)

where δ0.5 is the outer-scale of the flow, proportional to the integral-scale of turbulence
and computed as the jet half-width, i.e. the distance between the points where the
average jet velocity falls to half its centreline value. Here, u′ is the representative
value of the turbulent velocity fluctuations and ν is the local kinematic viscosity.
This parameter is used throughout the paper to parameterize the dependence of the
dissipation length scales on Reynolds number, as is customary in turbulence theory.
Depending on the method of computation of the (instantaneous or mean) scalar
dissipation length scales (cf. § 2.1), the u′ value at any location will be taken as the
instantaneous value or as the root-mean-square of the local distribution, respectively.
Further details on the flow configuration and its numerical implementation can be
found in Pantano (2004).

It remains to say that the character of the simulated jet flame implies that a
sizeable number of data points in the quasi-laminar region outside the separation
surfaces of the jet will not be relevant for the computation of the dissipation
length scales. An estimate of the region that contributes significantly to the data-
processing algorithms can be based on the normalized correlation coefficient of scalar
fluctuations, CZ(xc, yc, r) (cf. Appendix A). The regions, where |CZ(xc, yc, r)| remains
monotonically less than 1% of its centreline value of unity, correspond to quasi-
laminar regions. Here, the flow is largely uncorrelated with the turbulence within
the jet and therefore does not affect the dissipation of scalar fluctuations. Based
on this measure, about 75% of all data points contribute to the computation of
the dissipation length scales. It shall be noted, however, that none of the methods
introduced in § 2.2 and described in the following sections explicitly discards the
quasi-laminar region of the computational domain for post-processing.

4. Spectral analysis
4.1. Cross-stream scalar-dissipation spectra

The spectral theory of the turbulent velocity field has a direct analogy in turbulent
scalar fields (Batchelor 1959; Tennekes & Lumley 1974). For sufficiently high Reynolds
numbers and Schmidt numbers close to unity, the form of the scalar spectra is similar
to that of the velocity spectra.

In the present study, the one-dimensional scalar spectra, EZ(ky), at wavenumber
ky is computed as the one-dimensional Fourier transform of the two-point cross-
stream correlation, that is equivalent to the power spectrum of scalar fluctuations
(Tennekes & Lumley 1974; Pope 2000) at various downstream locations. The details
on the computation of the one-dimensional turbulence dissipation spectrum are given
in Appendix A. The choice of locations for the spectral analysis is limited by the
evolving nature of the simulated turbulent jet, where large portions of the upstream
flow domain on either side of the jet are quasi-laminar (Pantano 2004). Therefore,
scalar correlations in such regions are of little interest. Owing to these constraints,
the region along the centre of the evolving turbulent jet was chosen for the spectral
analysis, where the local turbulent Reynolds-number values are high enough for the
existence of a ‘universal’ dissipation range (cf. § § 4.2 and 4.3).
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It is recognized that the one-dimensional cross-stream spectra do not account for
the streamwise and spanwise contributions of mixture fraction gradients to the total
scalar dissipation. However, determination of the absolute values of scalar dissipation
is not of primary concern here since the length scales will be determined by the
largest gradients, some of which will be aligned with the cross-stream direction.
In planar-jet turbulent flow (with purely streamwise forcing of the jet) the thin
shear layers and, therefore, the thin and elongated scalar dissipation structures are
predominantly orthogonal to the cross-stream direction in the near-nozzle region.
Thus, the cross-stream scalar spectra are able to capture the average scales (or the
average thicknesses of these structures) at which scalar fluctuations are dissipated
for this flow. In addition, the grid resolution is finest in this direction, enabling the
computation of EZ(ky) at the highest possible wavenumbers. Note, however, that
the dissipation field becomes nearly isotropic far downstream (Buch & Dahm 1998;
Su & Clemens 2003) and one-dimensional cross-stream spectra may not capture the
smallest scales there.

4.2. Batchelor length-scale computation

The ‘universal’ dissipation subrange of the standard non-reactive spectral theory of
turbulence is defined as the region in wavenumber space beyond the diffusive roll-off
limit. In terms of the non-dimensionalized wavenumber, k∗, which is computed
by multiplying the wavenumber with the Kolmogorov- or Batchelor-scale, this
subrange starts at k∗ � 0.1 (Pope 2000). A comparison of various experimental results
in Saddoughi & Veeravalli (1994) shows that the scaled one-dimensional spectra
collapse onto a single curve at k∗ > 0.1 for Taylor Reynolds numbers between 23 and
3180. In other words, they show a ‘universal’ dissipation range scaling. Furthermore,
it is observed that the scaled one-dimensional dissipation spectrum (Pope 2000) peaks
at k∗ � 0.26. Since the peak value occurs at k∗ > 0.1, it can be used to define a spectral
estimate of the Kolmogorov or Batchelor length scale for the aforesaid range of
Taylor Reynolds numbers. In the case of the scalar field, an analogy can be used to
define a spectral scalar dissipation scale, according to

ηZs
=

[k∗]peak

kpeak

� 0.26

kpeak

, (4.1)

where ky = kpeak is the wavenumber of the peak in the computed cross-stream
dissipation spectra. It can be shown that the area up to the k∗ = 1.0 cutoff under the
aforesaid one-dimensional dissipation spectrum contributes around 98% to the total
mean dissipation. The high-resolution experiments of Wang et al. (2007a, b) use a
similar technique to arrive at the estimates of the Batchelor scale for axial jet flames
at locations � 40 nozzle diameters downstream. The value of the model spectrum
of Pope (2000) at k∗ =1.0 corresponds to 7.3% of the peak dissipation level. Thus,
the inverse of the wavenumber where the dissipation spectrum reaches 7.3% of its
peak value is taken as the Batchelor-scale estimate. This wavenumber is denoted k7.3%

and the corresponding Batchelor-scale estimate is given by

ηZs
� 1

k7.3%

. (4.2)

Wang et al. (2007a, b) use a somewhat more stringent estimate based on the
wavenumber where the spectrum reaches 2% of its peak value.

Figure 2 shows the computed non-dimensional scalar dissipation spectra. On scaling
the wavenumber range for the dissipation spectra with ηZs

obtained from (4.2), it
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Figure 2. Scalar dissipation spectra in logarithmic coordinates at various downstream
locations. The horizontal axis denotes the non-dimensional wavenumber kyηZs

and the vertical
axis denotes the normalized scalar dissipation spectra, D∗

Z = DZ(ky)/(〈D〉〈χy〉〈ε〉−1/3
ηZs

−1/3).
The spectra were initially computed for 512 closely spaced values of ky and averaged into 30
‘bins’ in the wavenumber space.

is evident that the numerical cutoff limit in the spectra does not set in until well
beyond the Batchelor scale (i.e. at kyηZs

� 2.3). As expected, the peaks for the non-
dimensionalized spectra occur at kyηZs

� 0.26, with a slight shift to lower wavenumbers
for xc < 5H . The vertical line indicates the approximate non-dimensional wavenumber
limit (around kyηZs

=2.3) beyond which no more meaningful spectral response is
obtained from the database. For wavenumbers beyond this limit, the turbulence
energy spectrum becomes flat and represents a ‘noise floor’ (Wang et al. 2007a). This
in turn corresponds to an increase, proportional to ky

2 (cf. Appendix A), evidenced
in the dissipation spectra beyond this limit.

The one-dimensional dissipation spectra computed above can be used to extract
information regarding the average downstream evolution of the cross-stream scalar
dissipation, which in turn provides estimates for the Batchelor length scales at the
respective downstream locations. Analogous to the definition of viscous dissipation in
wavenumber space, the average scalar dissipation at any downstream centreline
location can be recovered from the integral of the one-dimensional dissipation
spectrum at that location (Tennekes & Lumley 1974; Mathieu & Scott 2000; Pope
2000). The spectral estimate (denoted by the subscript s) of the average scalar
dissipation rate is, therefore, given by

〈χy〉
s
= 2

∫ ∞

0

DZ(ky) dky, (4.3)

where DZ is defined in Appendix A. The above identity is consistent with the factor
of 2 used in (1.1). It must be noted that the spectral estimate of the average scalar
dissipation rate corresponds only to the dominant cross-stream component of 〈χy〉
given by the spatial-gradient along the y-coordinate only, i.e. 〈χy〉 = 〈2D (∂Z/∂y)2〉.
As expected, there is good agreement between the jet-centreline averaged scalar
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Figure 3. Comparison of the downstream evolutions (along the jet centreplane) of the
averaged scalar dissipation rates: —, calculated from cross-stream scalar gradients, 〈χy〉,
and �, recovered from one-dimensional dissipation spectra, 〈χy〉s = 2

∫
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dissipation rate from spatial and spectral calculations, as functions of the downstream
coordinate (figure 3).

4.3. Reynolds-number scaling

The non-reacting experimental data in Saddoughi & Veeravalli (1994) show that the
departure from the universal behaviour at low Reynolds numbers arises mainly
in the energy-containing range (roughly k∗ > 0.003), while the inertial-subrange
(roughly 0.003 < k∗ < 0.1) is diminished. However, as described in § 4.2, the whole
range of Reynolds numbers exhibits a ‘universal’ dissipation-range scaling at k∗ > 0.1
(Nelkin 1994; Pope 2000) and shows excellent agreement with the non-dimensional
spectrum.

A numerical simulation of isotropic turbulence by She et al. (1993) showed that the
scaled spectra fall onto a universal curve at k∗ � 0.03 for Taylor Reynolds numbers
in the range of 15 � Reλ � 200. In addition, the DNS study of turbulent scalar
mixing by Yeung et al. (2004) shows that Kolmogorov’s first hypothesis regarding
the dissipation range of the energy spectrum and, thus, its scaling given by (2.1)
holds at Taylor Reynolds numbers between 8 and 38. The same scaling is obtained
by Kushnir et al. (2006b) for dissipation ‘filament’ thicknesses when Taylor-scale
Reynolds numbers equal 10 and 24. Hence, for our present case where Reλ varies
from around 20 to 67 throughout the computational domain (and from 38 to 58
along the centreline), it is expected that the spatial scales in the dissipation range
still possess the ‘universal’ behaviour associated with Kolmogorov’s first hypothesis,
despite the diminished inertial subrange at such low-to-moderate Reynolds numbers.

Conventionally, the finest mixing-length scale is associated with the local turbulent
Reynolds number, Reδ , and Schmidt number via the relationship

ηZ

δ0.5

= Λ0Sc−3/4Reδ
−3/4, (4.4)
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Figure 4. Downstream variation of Λ0 values is computed by replacing ηZ with its
spectrally recovered value ηZs

from - - -, (4.1) and —, (4.2).

where Λ0 is the proportionality constant or the scaling coefficient. This relationship
is based on dimensional arguments and it must be noted that the Reδ-scaling in
the above definition follows from Kolmogorov’s first hypothesis, which holds (as
remarked above) at the Reynolds numbers that can be found in the present DNS.
The Batchelor-scale definition in Pitts et al. (1999) assumes the left-hand side in the
above equation, i.e. ηZ/δ0.5, to be of the same order-of-magnitude as Sc−3/4Reδ

−3/4

implying that Λ0 � 1. It should also be noted here that other experimental studies
(Buch & Dahm 1998; Su & Clemens 2003) give values of Λ0 in the range of 5 to 11
for the far-downstream self-similar regions of the jet.

To confirm the Reδ-scaling of (4.4) for the present study, the ηZ term is substituted
by its spectral estimate ηZs

from (4.1) and (4.2) along the jet centreline. The resulting
values of the scaling coefficient, Λ0, are then plotted as functions of the downstream
positions in figure 4. The values computed using (4.1) oscillate slightly around a
constant mean value of Λ0 � 0.7, except in the near inflow region (xc < 5H ) of the
developing jet flow, where cross-stream inhomogeneities are severe and the statistics
of the velocity field are poorly reflected in those of Z. The Λ0 values from (4.2) show
a similar downstream evolution, however, with appreciably fewer fluctuations and
remain around 0.5 for locations xc � 5H .

In the region upstream of xc = 5H , the jet core has not broken up yet and there
is a low amount of scalar mixing along the centreline. Consistently, the small scalar
dissipation rate (i.e. the dissipation spectrum being confined to a relatively small
range of wavenumbers) results in an over-estimation of the Batchelor scale from (4.1)
and (4.2). This seems to be in agreement with the results from the DNS by She et al.
(1993), where the computed kpeak wavenumber was found to be slightly smaller (at
lower Reynolds numbers) than the proportionality to 1/ηZ would imply. In other
words, the Kolmogorov scale based on 0.26/kpeak is somewhat over-estimated when
Taylor Reynolds numbers are low. However, the roughly constant values of Λ0 seen
for most of the downstream section ( � 5H ) in figure 4, corroborate the finding that
the spectrally computed estimates using (4.2) are representative of the Batchelor
length scales in the flow.
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5. Direct computation of scalar dissipation structures
We use a measurement method that is similar in spirit to the experimental technique

described in Su (1998) and Su & Clemens (2003). Here, we investigate directly the thin
sheet-like three-dimensional regions aligned with the regions of high shear within the
computational domain, where most of the scalar dissipation process remains concen-
trated (Buch & Dahm 1998; Tsurikov & Clemens 2002). Notable numerical studies of
the small-scale topological structure of the turbulent scalar/dissipation field have been
done by Wang & Peters (2006) and Kushnir et al. (2006b). In the former study, the
approach has been to identify the regions, termed as ‘dissipation elements’, of mono-
tonic increase (or decrease) of the fluctuating scalar concentration. Analysis of these
‘dissipation elements’ also confirms a high probability of alignment between scalar
gradients and the most compressive rate of strain, as found in the shear layers of the
turbulent jet flow. Kushnir et al. (2006b) analyses the topology of the two-dimensional
scalar-dissipation-rate field using a sophisticated numerical algorithm (Kushnir et al.
2006a). For all points on the two-dimensional field belonging to the regions delineated
by a threshold value of the dissipation level-set, the algorithm computes a so-called
‘proximity graph’, which is updated on successive coarse-graining and can be used to
quantify statistical properties such as the density and convexity of the points at each
level of resolution. Finally, a principal component analysis is carried out on these
dissipation ‘filaments’ or ‘sub-filaments’ identified on the basis of the aforementioned
statistical properties. The filament thickness is thus characterized by the eigenvalue
of the eigenvector orthogonal to the direction of orientation of the filament.

5.1. Algorithm

An algorithm previously used by Buch & Dahm (1998) and Su & Clemens (2003) for
the computation of the two-dimensional (planar) dissipation-layer thicknesses with a
correction for their three-dimensional orientation has been employed in the present
study. The dissipation layers are identified as the contours or level-sets at fixed values
of χ within the instantaneous χ(x, y) field. The fixed values are chosen as a fraction,
βm, of the local maxima in their neighbourhood (x, y) locations. The local thickness
of a dissipation layer, λ2d , at a given value of βm quantifies the instantaneous two-
dimensional dissipation length scale. This two-dimensional dissipation length-scale
estimate is then corrected by using the three-dimensional orientation of the scalar
gradient vector in terms of the out-of-plane angle, φ, to give the three-dimensional
length-scale estimate, λ3d . The algorithm and all the parameters involved are described
in more detail in Appendix B and figure 15 illustrates the procedure.

It is worth noting that the present algorithm introduces some simplifications in the
computations of the dissipation-layer thicknesses and it differs from the algorithm
used by Buch & Dahm (1998) and Su & Clemens (2003) in two aspects. First, the two-
dimensional neighbourhood regions that define the dissipative structures may include
more than one local maximum of χ for very low values of βm. As a result, these
regions would appear longer (more elongated) than the dissipation regions identified
by Buch & Dahm (1998). Secondly, we do not account for the variation in the ‘local
layer-normal dissipation maximum’ (see Buch & Dahm 1998 for its definition) along
the dissipation layer and this leads to thinner structures than reported in Buch &
Dahm (1998). However, owing to our choice of relatively high values for βm (cf.
Appendix B), the neighbourhood regions tend to isolate the local maxima and the
computed dissipation-layer thicknesses will be similar for the two algorithms. In other
words, the differences between the dissipation-layer thicknesses reported from both
algorithms will decrease with increasing βm.
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Figure 5. (a) PDFs of the logarithm of the corrected (three-dimensional) scalar dissi-
pation-layer thicknesses are normalized with the effective grid-discretization ∆3d for βm = 0.5,
0.75 and 0.9. The negative values for ln (λ3d/∆3d ) are numerical artefacts due to the thicknesses
computed at the very few locations where φ → 90◦. (b) PDFs of λ3d are normalized by the
dissipation length scale ηZ from (4.4) with a unity scaling coefficient. �, βm = 0.5; �, 0.75;
�, 0.9.

Figure 5(a) shows the distribution of the corrected scalar dissipation-layer

thicknesses, λ3d , normalized by the local grid-discretization, ∆3d =
(
∆x∆y∆z

)1/3
, in

the computational domain. The effective three-dimensional grid-spacing is denoted
by ∆3d , where ∆x , ∆y and ∆z are the variable grid-discretizations in the respective
coordinate directions. The detection of values smaller than the minimum grid-spacing
limit can be primarily associated with locations where the out-of-plane angle φ tends
to 90◦. This phenomenon is also amplified by the interpolation between grid points
near the corners of the dissipation layers when computing the iso-contours. However,
owing to the small number of such occurrences (cf. figure 16 in Appendix B), their
effect on the analysis is negligible.

In figure 5(b), the PDFs of the dissipation-layer thicknesses normalized by the
magnitude of the local dissipation scale, ηZ , show negative skews at all values of βm.
In other words, dissipation length scales smaller than the most frequently occurring
scale (given by the peak of each PDF) are more likely to occur than those larger than
the most frequently occurring scale. This is in agreement with the results in Kushnir
et al. (2006b), where a similar negative skew is observed in the normalized dissipation
‘filament’ thicknesses. In addition, figure 5(b) shows that the formation of dissipative
structures with thicknesses of the order of ηZ is conditional on the chosen value of βm.
However, this dependence on βm or any equivalent measure of spatial resolution is
not apparent in the analysis by Kushnir et al. (2006b). A majority of their computed
dissipation ‘filaments’ are reported to be thicker than ηZ , an observation limited to
lower βm values in the present analysis.

Schumacher et al. (2005) used scalar increments over the viscous convective range
between the Kolmogorov and Batchelor scales (for Sc> 1) which yielded a dissipation-
scale estimate slightly greater than ηZ . However, unlike Kushnir et al. (2006b), the
actual distribution of dissipation length scales is not captured in this analysis and
this approach is therefore not used here.
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Figure 6. Observed Reδ
−0.75 scaling dependence for the corrected dissipation-layer thicknesses,

λ3d in log–log coordinates. Data corresponding to a single computational time step is shown
at βm = 0.5, 0.75 and 0.9.

5.2. Reδ-scaling of dissipation-layer thicknesses

In this section, we use a local Reynolds-number definition where u′ represents the local
velocity fluctuation. This is necessary in order to account for the fluctuating nature
of λ3d and the necessity to relate instantaneous scales with Reynolds numbers based
on instantaneous or local quantities. This is opposed to the analysis in § 4.3 where
a quantity computed from two-point correlations such as the dissipation spectrum
requires Reynolds numbers based on averaged quantities such as the r.m.s. Figure 6
shows the scalar dissipation thickness as a function of Reynolds number. The whole
range of Reδ values is grouped into 60 bins and is plotted against the bin-average of
λ3d/

(
δ0.5Sc−1/2

)
in log–log coordinates. The least-squares fits for several values of βm

show a negative slope that approximates the value −0.75. This is consistent with a
Kolmogorov-type or Reδ

−3/4 scaling that is independent of βm and the findings are in
agreement with the experimental and numerical results of Buch & Dahm (1998), Su &
Clemens (2003) and Kushnir et al. (2006b).

It is important to note that the number of data samples for the dissipation-layer
thicknesses, i.e. the number of spatial locations within the computational domain
where the thicknesses have been computed, decreases with increasing βm as resolution
constraints increase. For example, the sample size for βm = 0.5, 0.75 and 0.9 is around
40 000, 30 000 and 9 000 points, respectively. Furthermore, the distribution of samples
becomes increasingly discontinuous over the streamwise direction and hence over the
Reδ-space at higher βm values, owing to correspondingly thinner layers. Therefore,
the plots show larger variation around the least-squares fit at larger βm values.

5.3. Variation of scaling coefficient with βm

Assuming the existence of a Reδ
−3/4 scaling of the dissipation-layer thicknesses as

evidenced in figure 6, the current formulation for λ3d can be assumed to scale (similar
to (4.4)) as

λ3d = Λ3dδ0.5Sc−3/4Reδ
−3/4, (5.1)
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where Λ3d is the scaling coefficient for the dissipation length scales, when expressed
in terms of corrected three-dimensional scalar dissipation-layer thicknesses. Values
of the scaling coefficient, Λ3d � 1.2 to 0.55 determined by (the exponential of) the
y-intercept of the least-square fits shown in figure 6, are observed to decrease over
the investigated local χ-resolution range given by βm =0.5 to 0.9. The scatter around
the mean (least-squares) estimate for Λ3d is nearly Gaussian-distributed over the whole
Reynolds-number range. The standard deviation in the scaling coefficient values is
around 30% of the mean for each βm value. Thus, the interval [0.4Λ3d, 1.6Λ3d]
represents the 95.4% confidence interval associated with our Λ3d estimates.

Evidently, the values for the scaling coefficient Λ3d are smaller than those predicted
in Buch & Dahm (1998) and Su & Clemens (2003), though it is of the same order
as the Λ0 value computed in § 4.3. This may be explained by the following: in Buch
& Dahm (1996, 1998) and Su & Clemens (2003) the dissipation-layer thickness is
defined as the distance across the layer between points where the dissipation rate is
20% of the local peak-value. This would be equivalent to a βm value of βm = 20%
in the present study. However, we have chosen to compute the dissipation layers at
much higher βm values to isolate the most strongly dissipative regions. These regions
determine the finest scales in the scalar field, which is a principal goal of this study.
Relaxation of βm to values of 20% would result in a thickening of the dissipation
layers and would lead to a higher estimate for Λ3d . Extrapolation of our results to βm

values of 0.1 − 0.2 would yield Λ3d of around 5.0 − 4.0, which is much closer to the
experimental estimates in Buch & Dahm (1998) and Su & Clemens (2003). Further
contributing factors to the differences are the simplifications in the algorithm described
in § 5.1 and the fact that the experimental studies were for the self-similar regions in
non-reacting turbulent jet flows. We stress that an exact determination of Λ3d is not
of primary interest here (and is, in fact, not possible owing to its dependence on βm).
We seek to establish the validity of scaling relationships for the dissipative structures
in turbulent reacting flows with low-to-moderate Reynolds numbers. These scaling
relationships appear to be similar to scaling laws established for non-reacting flows.

6. Spatial-filtering analysis
Adequate spatial resolution to capture scalar dissipation means that the scalar

gradient should remain sufficiently unchanged over the minimum length scale of
discretization or experimental probe-width employed for measurement. However,
owing to small-scale intermittency, the fluctuations in scalar gradients (and hence in
χ) can be many orders of magnitude higher than the mean and have a much higher
probability of occurrence (i.e. they show a lognormal-like PDF) than those in the
scalar (Sreenivasan 2004). Sreenivasan (2004) proposes that the best way to deal with
an intermittent variable such as χ is to smooth it locally over a non-overlapping
spatial interval (in other words, filter-width, wf ). The properties of the smoothed
variable can then be studied as a function of wf as it is extrapolated to the smallest
scale of interest. In the present study, we use the analogy of the above approach with
the experimental spatial-filtering technique of Barlow & Karpetis (2005b, b). This is
achieved by analysing the decay of the frequently occurring instantaneous spikes in
χ resolved by the DNS as the size, wf , of the applied numerical filter is increased
beyond the computational grid-resolution. The type of decay with wf is used to
reconstruct the hypothetical ‘fully resolved’ χ peak values corresponding to zero filter
width. The ratio of the DNS-resolved instantaneous spikes in χ to the ‘fully resolved’
reference limit is investigated.
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6.1. Spatial-filtering method

Previous experimental studies of axisymmetric turbulent jet flames by Barlow &
Karpetis (2005b) show that the peak value of the logarithm of the mean cross-stream
component of χ decreases linearly with increasing filter width. As explained above,
this linear decay is then exploited to calculate the ‘fully resolved’ limiting value at zero
filter width. However, it should be pointed out that in the context of the numerical
implementation of this technique to the present DNS, this ‘fully resolved’ scalar
dissipation is a hypothetical maximum that will probably not exist at any point in the
simulated flow. This theoretical value strictly serves as a good reference against which
the resolution of the spatially filtered χ peak values is quantified. Thus, a suitable
fraction of this reference is subsequently chosen as the effective length scale required
for adequate resolution. However, based on the discussion in § 2.1, the instantaneous
length scales central to the idea of adequacy of χ-resolution cannot be captured by
linear scaling of (the logarithm of) the mean dissipation, but of the instantaneous
χ-field that exhibits small-scale intermittency. Therefore, the spatial-filtering method
explores the instantaneous cross-stream profiles of scalar dissipation instead.

In the present DNS database, we consider the planar top-hat filtered mixture
fraction Zf (x, y, z) given by

Zf (x, y, z) =
1

∆x,f ∆y,f

∫ x+∆x,f /2

x−∆x,f /2

∫ y+∆y,f /2

y−∆y,f /2

Z(x ′, y ′, z) dx ′ dy ′, (6.1)

where ∆x,f and ∆y,f denote the filter width at any (x, y) position, with wf =√
∆x,f ∆y,f . For the filtering operation, we drop the z-dependence and consider, for

simplicity, the scalar dissipation fields at every (x, y)-plane as mutually independent
realizations. The filtered instantaneous scalar dissipation rate is calculated from the
spatially filtered mixture-fraction field at each corresponding grid-point by central
differencing of (1.1),

χf (x, y, z) = 2D

([
δxZf

∆x,f

]2

+

[
δyZf

∆y,f

]2

+

[
δzZf

∆z

]2
)

, (6.2)

where δx , δy and δz are the central-difference operators for the respective coordinate

directions. The smallest resolvable filter-width is given by ∆ =
√

∆x∆y , where
(∆x, ∆y, ∆z) is the basic grid-discretization used in the DNS, which varies from
location to location owing to the clustering of the grid nodes in regions close to the
shear layer. Successive iterations of spatial filtering with successively larger filter-width
values will smear out peak values of instantaneous Z (and hence χ).

6.2. Results and discussion

6.2.1. Effect of the filter width

Figure 7 shows that spatial filtering has a strong reducing effect on the instantaneous
peaks of scalar dissipation, with the peak value decreasing drastically for increasing
filter width. However, the corresponding effect on instantaneous mixture-fraction
profiles is practically negligible. If we now assume an exponential decay of the
maximum scalar dissipation as suggested by Barlow & Karpetis (2005b), it is possible
to study the ‘fully-resolved’ scalar dissipation maxima as the filter width is extrapolated
to a sufficiently small value. In other words, we assume a linear variation of the type:

ln (χf, peak) = ln (χ0, peak) + swf , (6.3)
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Figure 7. Variation of the instantaneous cross-stream profile of scalar-dissipation rate, χ ,
and mixture-fraction, Z, with increasing filter width, wf , at an arbitrarily chosen spatial
location (x/H = 2.8, z/H = 0.0). The peak value of the cross-stream χ profile appears to drop
exponentially with a linear increase in wf . - - -, ωf = ∼0.011H; �, ∼0.059H; —, ∼0.118H. The
inset shows the PDF of the correlation coefficient, ψ , for the least-squares fit between the
actual dependence of χ peak values on wf and the exponential-decay model in (6.3). ψ is
computed for the χ peak values at 1024/8 × 192/3 × 30 cross-stream profiles throughout the
present DNS database. The peak is observed for ψ � 0.99. Negative signs have been appended
to ψ values to indicate negative linear decay, i.e. for plots with s > 0.

where χf, peak =max (χ(y)) is the maximum scalar dissipation value along the cross-
stream direction for constant x and z (see figure 7 for illustration), ln (χ0, peak) is the
‘fully-resolved’ χ value computed by extrapolating to zero filter width and s(<0) is the
slope of decay of the logarithm of the scalar-dissipation peak value. The parameter
s quantifies the effect of spatial filtering on the χ peak value.

For every downstream location, Nz × NT realizations can be used to establish the
linear relationship described in (6.3), where, NT =30 is the number of different time
instants being considered. Following the method described by Barlow & Karpetis
(2005b), values of ln (χf, peak) and the corresponding filter width are accepted only
in cases where the linear correlation coefficient of their least-squares fit, ψ , is 0.99
or better during the spatial-filtering operation. As is customary, ψ = 0 indicates
completely uncorrelated variables and ψ = 1 implies perfect linear correlation. To
reduce the number of cross-stream profiles to be processed from an extremely large
value of Nx × Nz × NT ∼ 5.9 million, one χ-peak per cross-stream profile is assumed
for each eighth grid-point along the streamwise direction and each third grid-point
along the spanwise direction. Additionally, the condition on ψ limits the large number
of available spatio-temporal locations to around 75 500 cases that show near-perfect
linearity described by (6.3). The stringent demand on the choice of peak values χf, peak,
i.e. ψ → 1 ensures exponential decay with increasing filter width and the important
intermittent statistics are thus captured. In addition, the PDF of the ψ-values for
all the processed cross-stream profiles in figure 7 (inset) shows a high preponderance
of values around ψ � 0.99. This justifies the validity of the exponential-decay model
described by (6.3) in the present DNS.

The following qualitative observations come to light regarding the effects of spatial
filtering of the instantaneous χ profiles. First, the scalar-dissipation values at the ‘fully



Spatial length scales of scalar dissipation in jet flames 121

–4 –2 0 2 4

10–3

10–2

10–1

100

[ln(χf,peak) –µχ]/σχ

P
D

F
[l

n(
χ

f,p
ea

k)
]

PDF at wf  → 0
Log-normal PDF at wf  → 0
PDF at wf  = ∆
Log-normal PDF at wf  = ∆
PDF at wf  = 8∆
Log-normal PDF at wf  = 8∆

Figure 8. Dependence of the PDF of (the logarithms of) the filtered χ peak values,
PDF(ln χf,peak), on the level of filter width given by the magnitude of wf /∆. The symbols show
the actual data at various filter widths, whereas the curves show the corresponding log-normal
PDFs for the same mean, µχ , and variance, σχ .

resolved’ limit are observed to be finite. Thus, the extrapolation of the peak scalar
dissipation values to the ‘fully resolved’ limit seems valid, as shown by Barlow &
Karpetis (2005b). Secondly, the PDF of the scalar-dissipation peak value is captured
well at the minimum filter width wf =∆. Figure 8 compares different PDFs that are
obtained by varying the filter width, wf , in (6.1) and (6.2). The figure shows that the
PDF of the scalar dissipation values at the ‘fully resolved’ limit (i.e. wf → 0) does not
show any appreciable change from the PDF captured at the grid spacing (i.e. wf =∆),
indicating that the DNS grid captures the range of dissipation values quite well. For
the larger filter width wf =8∆, the probability distribution shows a negative skewness
as the probability of χ-values being smaller than the average increases. Thirdly, on
average, the effect of spatial filtering on χ increases with downstream distance. It peaks
at about the centre of the computational domain (around x/H � 7.5) beyond which
it slightly decreases (figure 9). This seems to be directly linked with the trend shown
by the outer-scale turbulent Reynolds number, Reδ , which also peaks in the centre of
the computational domain and decreases slightly further downstream (Pantano 2004).
Finally, the magnitude of the spatial-filtering effect, s, is sensitive to the corresponding
magnitudes of the dissipation peak values resolved by the grid. This is demonstrated
in figure 10. The downstream position with the largest average χ∆,peak corresponds to
the downstream position with the largest gradient |s|, and the downstream position
with the smallest average χ∆,peak corresponds to the downstream position with the
smallest gradient |s|. This correlation holds throughout the flow. This implies that the
decay of χ-peaks through filtering is correlated with the magnitudes of these peaks.

The local effects of spatial filtering can be quantified by the parameter s or,
equivalently, by the filter widths required for resolving a fixed fraction (defined as βf

in (6.5) below) of ln (χ0,peak). The observations made above imply that these effects
are linked to the magnitudes of χ peak values, which in turn are dependent on the
turbulent Reynolds number Reδ (Sreenivasan 2004) owing to the intermittent nature
of the χ field. These links are examined in detail next.
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Here, ∆ =
√

∆x∆y indicates the non-uniform grid-discretization employed in the DNS. The
dotted portions of the linear plots represent the extrapolation at wf < ∆ and filter widths
corresponding to this region do not represent physically resolved dissipation length scales.
�, x/H = 2.8; �, 7.5; �, 12.1.
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6.2.2. Choice of βf

Following Barlow & Karpetis (2005b), we can define a length scale to quantify the
effects of spatial filtering on χ . This length scale is the filter width required to recover



Spatial length scales of scalar dissipation in jet flames 123

0

2

4

6

8

P
D

F
(β

∆
)

0.7 0.8 0.9 1.0
–4.0

–3.3

–2.6

–1.9

–1.2

β∆

βf

ln
[χ

∆
, p

ea
k]

Figure 11. Variation of the fraction, β∆ of the ‘fully-resolved’ value χ0,peak recovered by the
local grid-discretization (for ψ > 0.99) against the (logarithm of) magnitude of the peak value
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a sufficiently large fraction βf of the (hypothetical) ‘fully resolved’ scalar-dissipation
value, where βf =χf,peak/χ0, peak. The definition of the length scale Lβf

then follows
from (6.3) as

Lβf
≡ ln (βf )

s
. (6.4)

An appropriate value of βf must be selected in (6.4) in order for Lβf
to be well

defined. The statistics of the fractional value of χ0, peak that is actually resolved by the
computational grid, i.e. the fraction β∆ = χ∆,peak/χ0,peak for wf = ∆, can be used as
guidance. Using (6.3), β∆ can be written as

β∆ = exp (s∆). (6.5)

Figure 11 shows the statistics of β∆ for the whole DNS database. It is evident that
the increasingly spiky behaviour of χ owing to intermittency that is approximated
here by the magnitude of the actually resolved peak-χ values or ln (χ∆,peak), correlates
with the decreasing ability of the grid to locally resolve χ0,peak (i.e. decreasing β∆). It
follows from (6.5) that for a fixed grid-discretization, ∆, the parameter β∆ depends
directly on the rate of spatial-filtering decay, s. Therefore, the correlation of β∆ with
χ∆,peak in figure 11 corroborates the preliminary observation made in § 6.2.1 that
larger χ peak values tend to decay faster with filtering. In addition, figure 11 shows
that most of the strongest spiky behaviour (or largest lnχ∆,peak values) occurs in the
vicinity of β∆ � 0.75. Thus, in the context of the present DNS, we need not relax the
definition of βf below 0.75 for it to be deemed sufficient to capture the strongest
dissipative events.

The few spatio-temporal locations (around 2% of the total), characterized by
β∆ < (βf = 0.75) in the PDF on figure 11, correspond to the extrapolated region
shown in figure 9. Therefore, the dissipation length-scale values, computed in terms
of the filter width at these locations, remain less than the local grid-size. However,
these numerical artefacts are insignificant in number and have negligible effect on the
analysis.
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6.2.3. Reδ scaling

Based on the spatial-filtering analysis of the scalar dissipation field, we can see that
the defined length scale Lβf

is a representative measure of a wide variety of local
dissipative events at βf = 0.75. Examination of the scaling of the local instantaneous
dissipation length scale, L0.75, with Reynolds number requires a parameterization at
each spatio-temporal location. For the present analysis, the instantaneous Reδ is again
used, based on the fluctuating velocity component, u′, instead of its root-mean-square
value. This is consistent with the remarks made earlier in § 5.2.

As commented in § 2.1, many previous studies on the resolution requirements for
χ (e.g. Buch & Dahm 1996, 1998; Pitts et al. 1999; Su & Clemens 2003, infer
that the minimum length scale deemed adequate to characterize scalar dissipation
is proportional to (if not of the same order as) the Batchelor scale. However, it
follows from the discussion in the preceding sections that the length scales, L0.75,
representative of the instantaneous scalar dissipation peaks captured by the spatial-
filtering technique, are equivalent to the local, minimum dissipation length scales
of Sreenivasan (2004) or ηZmin, that must be resolved for capturing the intermittency
of scalar dissipation. The Reynolds-number scaling for these minimum length scales
can be established by plotting ln (L0.75/(δ0.5Sc−3/4)) as a function of ln (Reδ). Because
of the large number of data points involved, we divide the ln (Reδ) range into 100
bins and plot the averaged value of L0.75/(δ0.5Sc−3/4) against that of ln (Reδ) for each
bin. The result is shown in figure 12 and the data reveal a slope of −1 in the double
logarithmic plot. We therefore suggest an Reδ

−1 scaling for the length scale L0.75:

L0.75 = Λδ0.5Sc−3/4Reδ
−1. (6.6)

This is consistent with scaling estimates for ηZmin by Sreenivasan & Meneveau (1988)
and Sreenivasan (2004) which are based on the theory of multifractals. A similar
Reδ

−1 scaling estimate for the intermittent dissipation length scales has also been
derived by Yakhot (2003) using the theory of turbulence structure functions. The
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dissipation scales are numerical artefacts of the data-analysis algorithms which have been
explained in § § 5.1 and 6.2.2.

physical mechanism that leads to the small-scale intermittency and the corresponding
deviation from Reδ

−3/4 scaling may be attributed to the self-stretching component of
the strain-rate tensor as introduced in She et al. (1990).

Note that the proposed type of Reδ
−1-scaling is determined by the fixed statistics

of the rate of spatial-filtering decay, s, and hence, it is insensitive to any change in
the βf value. On the other hand, the value of the scaling coefficient Λ is estimated to
be around 3.0 and depends on the chosen value of βf = 0.75 in our case.

We can conclude that the spatial filtering technique is capable of capturing
most of the local small-scale intermittent behaviour of χ and the present DNS
database supports the estimates in Sreenivasan & Meneveau (1988), Yakhot (2003)
and Sreenivasan (2004). The analysis indicates that the resolution requirements for
scalar dissipation measurements are much more stringent than the Batchelor scaling
would suggest. It also implies that the number of DNS grid points necessary for spatial
resolution of the finest (intermittent) structures scales with N3 ∝ Re3, as opposed
to the conventionally suggested N 3 ∝ Re9/4 scaling based on the Kolmogorov scale.
The implications for the large-eddy or direct numerical simulations of turbulence due
to the stringent scaling constraints imposed by dissipation intermittency have been
discussed in detail by Yakhot & Sreenivasan (2005).

7. Comparison of the analyses
Differences in the length-scale estimates that originate from the three methods

presented above can be best summarized in a comparison of their probability
distributions. Figure 13 shows these PDFs of the normalized average and
instantaneous dissipation length scales. The one-dimensional cross-stream spectral
estimate of the mean dissipation length scale, ηZs

, has been obtained using (4.2) at all
downstream locations along the jet centreline, whereas the instantaneous and local
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dissipation length scales, L0.75, are computed by spatial filtering of the peak values of
the instantaneous cross-stream χ-profiles. Figure 13 also includes the instantaneous
normalized three-dimensional dissipation-layer thickness, λ3d , distribution. All values
have been normalized with respect to the minimum grid-discretization, ∆y = 0.0118H .

Figure 13 shows a very wide distribution of the dissipation length scales represented
by L0.75 compared to ηZs

and λ3d . It also demonstrates that the bulk of the finest
mixing scales present in the flow (owing to the small-scale intermittency of χ)
cannot be characterized by the Batchelor scale. The PDF of the instantaneous
local dissipation scale, L0.75, peaks at a noticeably lower value than that of the
spectral dissipation scale estimate, ηZs

, indicating the necessity for much more stringent
resolution requirements than the commonly used scaling with the Batchelor scale.
Furthermore, the relatively limited range of dissipation length scales given by ηZs

and
λ3d seems to agree with the limited range of dissipation-layer thicknesses found for
direct experimental measurements (Buch & Dahm 1998).

8. Conclusions
The DNS database of Pantano (2004) of a turbulent reacting planar jet has been

used to estimate the resolution requirements for scalar-dissipation measurements and
numerical simulations. It has been shown that the present database is sufficiently
resolved in most regions of the flow for studying a highly intermittent variable such
as the scalar-dissipation rate. The mean and instantaneous scalar-dissipation length
scales were determined by three different methods: spectral analysis, direct investiga-
tion of scalar dissipation structures and spatial filtering of the instantaneous mixture
fraction field. Scalings and resolution criteria for experiments and simulations based
on the easily measurable outer-scale Reynolds number, Reδ , were then established.

It is shown that the spatial-filtering technique can be used to recover the wide
distribution of instantaneous scalar-dissipation length scales that are important in
accounting for the small-scale intermittency shown by χ and these are shown to be
proportional to the local-minimum dissipation length scales. This seems to confirm
the sufficiency criterion of χ-resolution based on the more stringent Reδ

−1 scaling
as indicated by the estimates in Sreenivasan & Meneveau (1988), Yakhot (2003)
and Sreenivasan (2004) when applied to reactive flows. The study shows that the
assumption of exponential decay of intermittent χ peak-values with increasing filter-
width holds. It thus allows the extrapolation to the ‘fully resolved’ limit and an
estimate of the actual resolution needs can be obtained.

The stringent resolution criterion (primarily for DNS studies) suggested in the
present study is limited to the resolution of scalar gradients or, equivalently, the
scalar dissipation rate, which plays the key role in turbulent scalar mixing. Other
physical quantities showing the same (or larger) degree of intermittent behaviour,
such as enstrophy, have not been analysed here and the applicability of the suggested
resolution criteria to these quantities is beyond the scope of this paper.

The Reynolds-number scaling for the spectrally recovered dissipation length scales
is of the Kolmogorov type, while the scaling coefficient, Λ0, was estimated to be
of order of unity. This implies that the one-dimensional dissipation spectra are
able to resolve the true Batchelor scales along the centreline of the evolving jet,
without any self-similarity assumptions and at low-to-moderate Reynolds-number
values. Notably, computation of instantaneous dissipation-layer thicknesses also yields
Batchelor scaling, with similar estimates of the scaling coefficient Λ3d that are more
conservative than other experimental estimates by Buch & Dahm (1998) and Su &
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Figure 14. Variation of the normalized correlation coefficient CZ(xc, yc, r) with the
cross-stream position vector r , at various downstream locations along the jet centreline
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- - -, 8.7;–·–, 13.6. The one-dimensional dissipation spectra corresponding to the correlation
coefficients shown are plotted in figure 2.

Clemens (2003) (for reasons explained in § 5.3). However, it is not immediately
clear why instantaneous dissipation-layer thicknesses would not yield the Reδ

−1

scaling, evidenced using the spatial-filtering method. A probable explanation may
be an inherent averaging involved in the process of computing dissipation contour
thicknesses, which yields estimates of the average rather than the true instantaneous
dissipation length-scales. Nevertheless, further investigation is required to explain this
properly.

The authors would like to thank Robert Barlow (at Sandia) for providing clarifi-
cations about the spatial-filtering technique. Financial support by the Engineering
and Physical Sciences Research Council via grant GR/T19650 is also gratefully
acknowledged. The authors also thank the anonymous reviewers for pointing out some
relevant references.

Appendix A. Computation of one-dimensional dissipation spectra
The two-point cross-stream correlation coefficient at any point (xc, yc) along the jet

centreline is defined as,

RZ(xc, yc, r) = 〈Z′(xc, yc, z, t)Z
′(xc, yc + r, z, t)〉, (A 1)

where r is the cross-stream distance and subscript c indicates jet centreline values.
The average value is computed as a simultaneous mean in temporal (t-) and spanwise
(z-) directions (Pantano 2004), by

〈φ〉(x, y) =
1

NT Nz

NT∑
n=1

Nz∑
k=1

φ(x, y, z, t), (A 2)

where NT is the number of time steps and Nz is the number of spanwise planes over
which the average of an arbitrary field φ(x, y, z, t) is computed. Figure 14 shows the
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plots of the normalized correlation coefficient,

CZ(xc, yc, r) =
RZ(xc, yc, r)

[〈Z′(xc, yc)
2〉〈Z′(xc, yc + r)2〉]1/2

, (A 3)

at various downstream locations along the jet centreline. Owing to the complex
unstable nature of the studied flow and the small size of the computational domain
(x/H � 15), isotropy about the centreplane is not assumed while computing the
correlation coefficients, i.e. in general RZ(xc, yc, r) �= RZ(xc, yc, −r).

The one-dimensional spectrum is defined as

EZ(ky) =
1

4π

∫ ∞

−∞
exp (−ikyr)RZ(r) dr, (A 4)

or equivalently by

RZ(r) = 2

∫ ∞

−∞
exp (ikyr)EZ(ky) dky, (A 5)

where the dependence on xc and yc has been dropped for clarity. For homogeneous
flow, it is possible to relate EZ(ky), using Parseval’s identity, to the dissipation
spectrum, giving

DZ(ky) = 2Dk2
yEZ(ky), (A 6)

where we have neglected variation of the molecular diffusion coefficient, D, in space
owing to changes in temperature.

Appendix B. Computation of dissipation-layer thicknesses
The algorithm used for identifying the dissipation layers and computing their

local thicknesses is shown schematically in figure 15. It essentially deals with a two-
dimensional dissipation field in the (x, y)-plane. First, the global maximum of the
scalar dissipation, χmax, at a specific plane is determined. Secondly, all structures, where
χ < 0.5χmax, are discarded to isolate the regions of strongest dissipative behaviour.
A parameter βm ≡ χ/χloc is introduced, which represents the fraction of the local
maximum, χloc, at any point in the scalar dissipation field. The βm parameter
demarcates the local spiky topology of the dissipation field for our investigation and
values between 50% and 90% are chosen for it. Finally, level sets or iso-contours of
the remaining structures at the iso-level of βmχloc are determined. It was observed that
for the present DNS test case, scalar-dissipation contours at values less than βm = 0.5
tend to intersect and thus do not correspond to extreme and isolated dissipative
events. This may be an effect of the relatively low-Reynolds-number range in the
present DNS, as previous experimental studies of dissipation layers at high Reynolds
numbers (Buch & Dahm 1998) do not show this tendency at comparable values of
βm. However, we are specifically interested in the finest scales of the scalar dissipation
and therefore, contours at values below χ/χloc = 0.5 are not of direct interest in the
present study. On the other hand, the reasoning behind the choice of βm no larger
than 0.9 is purely computational. There are too few occurrences for βm > 0.9 to obtain
reasonably accurate statistics.
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that vary from the global maximum of the planar χ-field, or χmax, to χmax/2.

Once the two-dimensional dissipation layers depicted in figure 15 have been
identified, each with its point-to-point connectivity, the algorithm processes the data
to compute the median by recognizing the elongated topology of the structure and
its corresponding corners. For each point on the contour, the nearest point that is
not on its branch between the corners is taken as the fellow-point on the opposite
branch. In order to remove computational noise, two points and two corresponding
fellow-points are bunched and averaged to obtain a layer midpoint. The line joining
these midpoints makes the median for each dissipation layer. Finally, the thickness
attributed to each point on the median is computed by calculating the length of the
segment orthogonal to the median at that point, whose endpoints manage to be on or
just inside the layer boundary in either direction. The measured two-dimensional-layer
thickness, λ2d , at each layer midpoint, is corrected for three-dimensional orientation
by the cosine of the out-of-plane angle of the ∇Z vector (Su & Clemens 2003), to
give

λ3d = λ2d cos φ. (B 1)

This projection becomes less reliable as the dissipation layers align less orthogonally
with the plane (x, y) of the flame, i.e. as φ increases, owing to increasingly significant
layer-curvature effects. In similar experimental studies, Su & Clemens (2003), do not
consider χ-level sets for which φ > 60◦. However, the PDFs of the out-of-plane angle
in figure 16 measured at all locations for different values of βm show an extremely
high preponderance (around 97%) of φ � 60◦, which makes the correction largely
reliable.
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